CHARACTERISATION OF METHYL DERIVATIVES OF D-GALACTOSE BY NMR SPECTROSCOPY

E.B. Rathbone and A.M. Stephen

C.S.I.R. Carbohydrate Research Unit, Department of Chemistry,
University of Cape Town, Rondebosch, South Africa

(Received in UK 24 February 1970; accepted for publication 5 March 1970)

Earlier communications described the NMR spectra in D_2O of a number of methyl ethers of \underline{D} -galactopyranose 1 and of galactitol 2 with particular reference to chemical shifts of the methoxyl protons. The identification of the positions of substitution in a partially or fully methylated derivative of \underline{D} -galactopyranose is now shown to be feasible by methyl glycosidation of the methylated compound, perdeuteriomethylation 3 of the product, and comparison of the methoxyl chemical shifts in the NMR spectrum run in benzene with those assigned for the methoxyl proton signals of methyl 2.3.4.6-tetra- \underline{O} -methyl- $\underline{\alpha}$ - and \underline{B} - \underline{D} -galactopyranosides (I and II, respectively). The procedure adopted resembles that employed by Gagnaire and Odier 4 for assignment of methoxyl proton signals in methylated \underline{D} -glucopyranosides. We have found also that the 60 MHz NMR spectrum of 2.3.4.6-tetra- \underline{O} -methyl- \underline{D} -galactitol (\underline{z} 1,3,4,5-tetra- \underline{O} -methyl- \underline{L} -galactitol) in either benzene or chloroform shows four separate methoxyl signals, the assignment of which is being made using suitable compounds (obtained from compounds IV to XI, below) containing CD₃ in place of CH₃.

The NMR spectra of I (Fig. 1) and II (Fig. 2) in benzene at 60 MHz, using TMS as internal standard, show five distinct methoxyl proton signals for both α - and β -anomers. NMR spectra in D_2 0 at 100 MHz (internal standard DSS, giving rise to the τ scale) showed five separate methoxyl signals for the α -glycoside I (τ between 6.51 and 6.62) but only four for the β -glycoside II (τ between 6.45 and 6.59). The assignments indicated in Figs. 1 and 2 were deduced and confirmed (apart from some uncertainty in identifying the C-2 and C-3 methoxyl signals of I) by comparing the methoxyl proton signals with those given by the following synthetic compounds, each compound being in effect fully methylated α - or β - Ω -galactopyranose

with partial replacement of CH_3 groups by CD_3 : methyl 2,3,4,6-tetra-0-methyl- \underline{d}_3 - α - \underline{D} -galactopyranoside (III), methyl 2-0-methyl-3,4,6-tri-0-methyl- \underline{d}_3 - α - \underline{D} -galactopyranoside (IV), methyl 2,3-di-0-methyl-4,6-di-0-methyl- \underline{d}_3 - α - \underline{D} -galactopyranoside (V), methyl 2,3,4-tri-0-methyl-6-0-methyl- \underline{d}_3 - α - \underline{D} -galactopyranoside (VI), methyl 2,3,6-tri-0-methyl-4-0-methyl- \underline{d}_3 - α - \underline{D} -galactopyranoside (VII), methyl 2-0-methyl-3,4,6-tri-0-methyl- \underline{d}_3 - β - \underline{D} -galactopyranoside (VIII), methyl 2,3-di-0-methyl-4,6-di-0-methyl- \underline{d}_3 - β - \underline{D} -galactopyranoside (IX), methyl 3,4-di-0-methyl-2,6-di-0-methyl- \underline{d}_3 - β - \underline{D} -galactopyranoside (XI). Preparation of these compounds was effected by trideuteriomethylation of the free hydroxyl groups in corresponding partially methylated, anomerically pure methyl α - or β - α -galactopyranosides synthesised by adaptation of known procedures. All the above compounds behaved identically on thin-layer chromatography (silica gel; chloroform-methanol, 5:1 v/v).

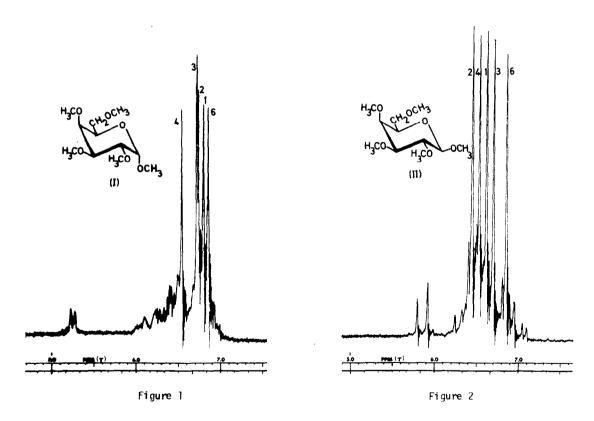


Fig. 1. 60 MHz NMR spectrum of I in benzene at 27° C.

Fig. 2. 60 MHz NMR spectrum of II in benzene at 27°C.

It is apparent from the chemical shifts given in Table I that signals arising from methoxyl groups at C-6, C-4 and C-3 substituted in the methyl- \underline{p} -galactopyranoside structures are not much affected by anomeric change. On the contrary the C-2 methoxyl signal lies 0.25 ppm upfield in the spectrum of the α -glycoside (C-1 methoxyl axial) compared with that of the β -glycoside (C-1 methoxyl equatorial). A similar effect (with a change in shift of 0.24 ppm) has been observed in the \underline{p} -glucose series. For NMR spectra in D_2O , the difference in chemical shift of the methoxyl groups in the α and β forms of 2- \underline{O} -methyl- \underline{p} -galactopyranose was reported earlier to be 0.13 ppm (shifted in the same direction), and we have recently observed a corresponding difference in shift for the C-2 methoxyl signals of the methyl 2- \underline{O} -methyl- α - and β - \underline{D} -galactopyranosides.

Compound	Position(s) of OCH ₃ group(s)	Position(s) of OCD ₃ group(s)	Chemical shifts (τ scale) of methoxyl proton signals at carbon(s) 1 2 3 4 6				
]	2	3	4	0
Ī	1α,2,3,4,6	-	6.76	6.70	6.69	6.52	6.82
II	1β,2,3,4,6	-	6.61	6.45	6.69	6.53	6.84
III	1α	2,3,4,6	6.76				
IV	1α,2	3,4,6	6.76	6.70			
٧	10,2,3	4,6	6.76	6.70	6,69		
٧I	1α,2,3,4	6	6.76	6.70	6.69	6.52	
VII	1α,2,3,6	4	6.76	6.70	6.69		6.82
VIII	1β,2	3,4,6	6.61	6.45			
IX	18,2,3	4,6	6.61	6.45	6.69		
χ	18,3,4	2,6	6.61		6.69	6.53	
ΧI	18,2,4,6	3	6.61	6.45		6.53	6.84

The chemical shift of the anomeric methoxyl group in the fully methylated \underline{D} -galactopyranoses changes from $\tau 6.76$ to $\tau 6.61$ when the configuration is changed from α (compound I) to β (compound II), a difference of 0.15 ppm. In the corresponding methylated \underline{D} -glucopyranoses, the difference in chemical shift was found to be 0.14 ppm in the same direction. A similar downfield shift of 0.16 ppm is found in the NMR spectra of methyl α - \underline{D} -galactopyranoside (OMe, τ 6.61) and methyl β - \underline{D} -galactopyranoside (OMe, τ 6.45) run in \underline{D}_2 0.

Acknowledgement: We are indebted to the National Chemical Research Laboratory, C.S.I.R., and the Department of Chemistry, University of Stellenbosch, for the running of some of the NMR spectra.

REFERENCES

- J.A. Jones, E.B. Rathbone, A.M. Stephen, K.G.R. Pachler and P.L. Wessels,
 S. Afr. Med. J., 42, 117 (1968).
- 2. E.B. Rathbone, A.M. Stephen and G.R. Woolard, S. Afr. Med. J., 42, 793 (1968).
- 3. R. Kuhn, H. Trischmann and I. Löw, Angew. Chem., 67, 32 (1955).
- 4. D. Gagnaire and L. Odier, Carbohyd. Res., 11, 33 (1969).
- 5. K.G.R. Pachler, E.B. Rathbone and A.M. Stephen, unpublished results.